14t-5t^2=0

Simple and best practice solution for 14t-5t^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14t-5t^2=0 equation:



14t-5t^2=0
a = -5; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·(-5)·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*-5}=\frac{-28}{-10} =2+4/5 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*-5}=\frac{0}{-10} =0 $

See similar equations:

| (6x-5)+(x+8)+(2x-3)=180 | | 8n+6=n-(-62) | | -4y+4y^2-60=0 | | 5w^2+18w+9=0 | | (3+Y)-(2x2)+6=9 | | 2x+48=2(2x) | | 29+3x-2+72=180 | | 6-3/4x=1/2x-4 | | 7c+6c=45 | | 0=14t-5t^2 | | x-15=2(x-53) | | -2(-p-6)=8p-12 | | (x+13)+(63)+(3x)=180 | | 9+5n=34 | | 16x+6=18x | | (63)+(3x)+(x+13)=180 | | -25+v=6v-(5-8v) | | (3x)+(18x)+(5x-2)=180 | | 7x+22=x+70 | | X+41+3x+9=180 | | 68+65+x+x=180 | | 81+3x-16+22=180 | | 3x+1-6x=4x+11-9x | | 4x-0.3=0.5×-6 | | 36=18x | | 6x+3=88 | | X+41+3x+9=~×∆ | | 6(x-5)=7x+3 | | 70=7x+35 | | 8h+130=210 | | 3z-5(3z+2)=2-5(-4-z) | | -7x-37=-7-2(-2x+4) |

Equations solver categories